Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Virol ; 97(5): e0037523, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-2316566

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Coronavirus/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Lysine/metabolism , Swine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Replication
2.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: covidwho-2267800

ABSTRACT

Recently, lysine lactylation (Kla), a novel post-translational modification (PTM), which can be stimulated by lactate, has been found to regulate gene expression and life activities. Therefore, it is imperative to accurately identify Kla sites. Currently, mass spectrometry is the fundamental method for identifying PTM sites. However, it is expensive and time-consuming to achieve this through experiments alone. Herein, we proposed a novel computational model, Auto-Kla, to quickly and accurately predict Kla sites in gastric cancer cells based on automated machine learning (AutoML). With stable and reliable performance, our model outperforms the recently published model in the 10-fold cross-validation. To investigate the generalizability and transferability of our approach, we evaluated the performance of our models trained on two other widely studied types of PTM, including phosphorylation sites in host cells infected with SARS-CoV-2 and lysine crotonylation sites in HeLa cells. The results show that our models achieve comparable or better performance than current outstanding models. We believe that this method will become a useful analytical tool for PTM prediction and provide a reference for the future development of related models. The web server and source code are available at http://tubic.org/Kla and https://github.com/tubic/Auto-Kla, respectively.


Subject(s)
COVID-19 , Lysine , Humans , Lysine/metabolism , HeLa Cells , SARS-CoV-2/metabolism , Machine Learning
3.
J Med Chem ; 66(7): 5289-5304, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2258013

ABSTRACT

N6-(((trimethylsilyl)-methoxy)carbonyl)-l-lysine (TMSK) and N6-trifluoroacetyl-l-lysine (TFAK) are non-canonical amino acids, which can be installed in proteins by genetic encoding. In addition, we describe a new aminoacyl-tRNA synthetase specific for N6-(((trimethylsilyl)methyl)-carbamoyl)-l-lysine (TMSNK), which is chemically more stable than TMSK. Using the dimeric SARS-CoV-2 main protease (Mpro) as a model system with three different ligands, we show that the 1H and 19F nuclei of the solvent-exposed trimethylsilyl and CF3 groups produce intense signals in the nuclear magnetic resonance (NMR) spectrum. Their response to active-site ligands differed significantly when positioned near rather than far from the active site. Conversely, the NMR probes failed to confirm the previously reported binding site of the ligand pelitinib, which was found to enhance the activity of Mpro by promoting the formation of the enzymatically active dimer. In summary, the amino acids TMSK, TMSNK, and TFAK open an attractive path for site-specific NMR analysis of ligand binding to large proteins of limited stability and at low concentrations.


Subject(s)
Amino Acids , COVID-19 , Humans , Amino Acids/chemistry , Lysine , Ligands , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Proteins/metabolism , Magnetic Resonance Spectroscopy , Binding Sites
4.
Biomolecules ; 12(9)2022 09 06.
Article in English | MEDLINE | ID: covidwho-2273374

ABSTRACT

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded ß-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Amino Acid Sequence , Aspartic Acid , Lysine/genetics , Methyltransferases/metabolism , Phylogeny , S-Adenosylmethionine/metabolism , Water
5.
J Med Chem ; 65(14): 9580-9606, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-2185473

ABSTRACT

Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.


Subject(s)
Neoplasms , Sirtuins , Humans , Lysine/metabolism , Peptides , Structure-Activity Relationship
6.
Front Immunol ; 13: 954435, 2022.
Article in English | MEDLINE | ID: covidwho-2198857

ABSTRACT

Introduction: COVID-19 pandemic has been threatening public health and economic development worldwide for over two years. Compared with the original SARS-CoV-2 strain reported in 2019, the Omicron variant (B.1.1.529.1) is more transmissible. This variant has 34 mutations in its Spike protein, 15 of which are present in the Receptor Binding Domain (RBD), facilitating viral internalization via binding to the angiotensin-converting enzyme 2 (ACE2) receptor on endothelial cells as well as promoting increased immune evasion capacity. Methods: Herein we compared SARS-CoV-2 proteins (including ORF3a, ORF7, ORF8, Nucleoprotein (N), membrane protein (M) and Spike (S) proteins) from multiple ancestral strains. We included the currently designated original Variant of Concern (VOC) Omicron, its subsequent emerged variants BA.1, BA2, BA3, BA.4, BA.5, the two currently emerging variants BQ.1 and BBX.1, and compared these with the previously circulating VOCs Alpha, Beta, Gamma, and Delta, to better understand the nature and potential impact of Omicron specific mutations. Results: Only in Omicron and its subvariants, a bias toward an Asparagine to Lysine (N to K) mutation was evident within the Spike protein, including regions outside the RBD domain, while none of the regions outside the Spike protein domain were characterized by this mutational bias. Computational structural analysis revealed that three of these specific mutations located in the central core region, contribute to a preference for the alteration of conformations of the Spike protein. Several mutations in the RBD which have circulated across most Omicron subvariants were also analysed, and these showed more potential for immune escape. Conclusion: This study emphasizes the importance of understanding how specific N to K mutations outside of the RBD region affect SARS-CoV-2 conformational changes and the need for neutralizing antibodies for Omicron to target a subset of conformationally dependent B cell epitopes.


Subject(s)
COVID-19 , Lysine , Humans , Lysine/genetics , Asparagine , SARS-CoV-2/genetics , Endothelial Cells , Pandemics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/genetics , Mutation
7.
PLoS Pathog ; 18(9): e1010811, 2022 09.
Article in English | MEDLINE | ID: covidwho-2021986

ABSTRACT

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


Subject(s)
COVID-19 , Sirtuins , Antiviral Agents , Exoribonucleases/metabolism , Humans , Lysine , Methyltransferases/metabolism , NAD , Proviruses , RNA, Viral/metabolism , SARS-CoV-2 , Sirtuins/genetics , Viral Nonstructural Proteins/metabolism
8.
J Med Chem ; 65(17): 11840-11853, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2016520

ABSTRACT

Site-selective lysine modification of peptides and proteins in aqueous solutions or in living cells is still a big challenge today. Here, we report a novel strategy to selectively quinolylate lysine residues of peptides and proteins under native conditions without any catalysts using our newly developed water-soluble zoliniums. The zoliniums could site-selectively quinolylate K350 of bovine serum albumin and inactivate SARS-CoV-2 3CLpro via covalently modifying two highly conserved lysine residues (K5 and K61). In living HepG2 cells, it was demonstrated that the simple zoliniums (5b and 5B) could quinolylate protein lysine residues mainly in the nucleus, cytosol, and cytoplasm, while the zolinium-fluorophore hybrid (8) showed specific lysosome-imaging ability. The specific chemoselectivity of the zoliniums for lysine was validated by a mixture of eight different amino acids, different peptides bearing potential reactive residues, and quantum chemistry calculations. This study offers a new way to design and develop lysine-targeted covalent ligands for specific application.


Subject(s)
Lysine , Peptides , Coronavirus 3C Proteases/chemistry , Lysine/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Serum Albumin, Bovine/chemistry , Water/chemistry
9.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2010123

ABSTRACT

Molecular dynamics (MD) simulations are powerful theoretical methods that can reveal biomolecular properties, such as structure, fluctuations, and ligand binding, at the level of atomic detail. In this review article, recent MD simulation studies on these biomolecular properties of the RNA-dependent RNA polymerase (RdRp), which is a multidomain protein, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are presented. Although the tertiary structures of RdRps in SARS-CoV-2 and SARS-CoV are almost identical, the RNA synthesis activity of RdRp of SARS-CoV is higher than SARS-CoV-2. Recent MD simulations observed a difference in the dynamic properties of the two RdRps, which may cause activity differences. RdRp is also a drug target for Coronavirus disease 2019 (COVID-19). Nucleotide analogs, such as remdesivir and favipiravir, are considered to be taken up by RdRp and inhibit RNA replication. Recent MD simulations revealed the recognition mechanism of RdRp for these drug molecules and adenosine triphosphate (ATP). The ligand-recognition ability of RdRp decreases in the order of remdesivir, favipiravir, and ATP. As a typical recognition process, it was found that several lysine residues of RdRp transfer these ligand molecules to the binding site such as a "bucket brigade." This finding will contribute to understanding the mechanism of the efficient ligand recognition by RdRp. In addition, various simulation studies on the complexes of SARS-CoV-2 RdRp with several nucleotide analogs are reviewed, and the molecular mechanisms by which these compounds inhibit the function of RdRp are discussed. The simulation studies presented in this review will provide useful insights into how nucleotide analogs are recognized by RdRp and inhibit the RNA replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Adenosine Triphosphate , Amides , Antiviral Agents/chemistry , Humans , Ligands , Lysine , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines , RNA , RNA-Dependent RNA Polymerase
10.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: covidwho-2010115

ABSTRACT

Background: Hyperinflammation is frequently associated with the chronic pain of autoimmune disease and the acute death of coronavirus disease (COVID-19) via a severe cytokine cascade. CIGB-258 (Jusvinza®), an altered peptide ligand with 3 kDa from heat shock protein 60 (HSP60), inhibits the systemic inflammation and cytokine storm, but the precise mechanism is still unknown. Objective: The protective effect of CIGB-258 against inflammatory stress of N-ε-carboxymethyllysine (CML) was tested to provide mechanistic insight. Methods: CIGB-258 was treated to high-density lipoproteins (HDL) and injected into zebrafish and its embryo to test a putative anti-inflammatory activity under presence of CML. Results: Treatment of CML (final 200 µM) caused remarkable glycation of HDL with severe aggregation of HDL particles to produce dysfunctional HDL, which is associated with a decrease in apolipoprotein A-I stability and lowered paraoxonase activity. Degradation of HDL3 by ferrous ions was attenuated by a co-treatment with CIGB-258 with a red-shift of the Trp fluorescence in HDL. A microinjection of CML (500 ng) into zebrafish embryos resulted in the highest embryo death rate, only 18% of survivability with developmental defects. However, co-injection of CIGB-258 (final 1 ng) caused the remarkable elevation of survivability around 58%, as well as normal developmental speed. An intraperitoneal injection of CML (final 250 µg) into adult zebrafish resulted acute paralysis, sudden death, and laying down on the bottom of the cage with no swimming ability via neurotoxicity and inflammation. However, a co-injection of CIGB-258 (1 µg) resulted in faster recovery of the swimming ability and higher survivability than CML alone injection. The CML alone group showed 49% survivability, while the CIGB-258 group showed 97% survivability (p < 0.001) with a remarkable decrease in hepatic inflammation up to 50%. A comparison of efficacy with CIGB-258, Infliximab (Remsima®), and Tocilizumab (Actemra®) showed that the CIGB-258 group exhibited faster recovery and swimming ability with higher survivability than those of the Infliximab group. The CIGB-258 group and Tocilizumab group showed the highest survivability, the lowest plasma total cholesterol and triglyceride level, and the infiltration of inflammatory cells, such as neutrophils in hepatic tissue. Conclusion: CIGB-258 ameliorated the acute neurotoxicity, paralysis, hyperinflammation, and death induced by CML, resulting in higher survivability in zebrafish and its embryos by enhancing the HDL structure and functionality.


Subject(s)
COVID-19 , Lipoproteins, HDL , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Infliximab , Lysine/analogs & derivatives , Paralysis , Zebrafish/metabolism
11.
J Am Chem Soc ; 144(34): 15885-15893, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1991506

ABSTRACT

Binding via reversible covalent bond formation presents a novel and powerful mechanism to enhance the potency of synthetic inhibitors for therapeutically important proteins. Work on this front has yielded the anticancer drug bortezomib as well as the antisickling drug voxelotor. However, the rational design of reversible covalent inhibitors remains difficult even when noncovalent inhibitors are available as a scaffold. Herein, we report chemically modified phage libraries, both linear and cyclic, that incorporate 2-acetylphenylboronic acid (APBA) as a warhead to bind lysines via reversible iminoboronate formation. To demonstrate their utility, these APBA-presenting phage libraries were screened against sortase A of Staphylococcus aureus, as well as the spike protein of SARS-CoV-2. For both protein targets, peptide ligands were readily identified with single-digit micromolar potency and excellent specificity, enabling live-cell sortase inhibition and highly sensitive spike protein detection, respectively. Furthermore, our structure-activity studies unambiguously demonstrate the benefit of the APBA warhead for protein binding. Overall, this contribution shows for the first time that reversible covalent inhibitors can be developed via phage display for a protein of interest. The phage display platform should be widely applicable to proteins including those involved in protein-protein interactions.


Subject(s)
Bacteriophages , COVID-19 , Bacteriophages/metabolism , Humans , Ligands , Lysine/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
12.
Angew Chem Int Ed Engl ; 61(40): e202206205, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-1990419

ABSTRACT

Ubiquitin (Ub)-like protein ISG15 (interferon-stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS-CoV-2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro ) encoded by foot-and-mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15-propargylamide and ISG15-rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS-CoV-2 papain-like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin-like protein Nedd8) protein tools.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , Catalysis , Cytokines/metabolism , Interferons , Lysine , NEDD8 Protein , Peptide Hydrolases/metabolism , Proteomics , SARS-CoV-2 , Ubiquitins/chemistry
13.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1963996

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Aspirin/pharmacology , Aspirin/therapeutic use , Glycine/pharmacology , Glycine/therapeutic use , Humans , Lysine
14.
Microb Biotechnol ; 15(8): 2145-2159, 2022 08.
Article in English | MEDLINE | ID: covidwho-1961453

ABSTRACT

The growing world needs commodity amino acids such as L-glutamate and L-lysine for use as food and feed, and specialty amino acids for dedicated applications. To meet the supply a paradigm shift regarding their production is required. On the one hand, the use of sustainable and cheap raw materials is necessary to sustain low production cost and decrease detrimental effects of sugar-based feedstock on soil health and food security caused by competing uses of crops in the feed and food industries. On the other hand, the biotechnological methods to produce functionalized amino acids need to be developed further, and titres enhanced to become competitive with chemical synthesis methods. In the current review, we present successful strain mutagenesis and rational metabolic engineering examples leading to the construction of recombinant bacterial strains for the production of amino acids such as L-glutamate, L-lysine, L-threonine and their derivatives from methanol as sole carbon source. In addition, the fermentative routes for bioproduction of N-methylated amino acids are highlighted, with focus on three strategies: partial transfer of methylamine catabolism, S-adenosyl-L-methionine dependent alkylation and reductive methylamination of 2-oxoacids.


Subject(s)
Amino Acids , Corynebacterium glutamicum , Amino Acids/metabolism , Corynebacterium glutamicum/genetics , Glutamic Acid/metabolism , Lysine/metabolism , Metabolic Engineering , Methanol/metabolism
15.
Front Immunol ; 13: 827603, 2022.
Article in English | MEDLINE | ID: covidwho-1952318

ABSTRACT

Despite the growing number of the vaccinated population, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global health burden. Obesity, a metabolic syndrome affecting one-third of the population, has proven to be a major risk factor for COVID-19 severe complications. Several studies have identified metabolic signatures and disrupted metabolic pathways associated with COVID-19, however there are no reports evaluating the role of obesity in the COVID-19 metabolic regulation. In this study we highlight the involvement of obesity metabolically in affecting SARS-CoV-2 infection and the consequent health complications, mainly cardiovascular disease. We measured one hundred and forty-four (144) metabolites using ultra high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) to identify metabolic changes in response to SARS-CoV-2 infection, in lean and obese COVID-19 positive (n=82) and COVID-19 negative (n=24) patients. The identified metabolites are found to be mainly correlating with glucose, energy and steroid metabolisms. Further data analysis indicated twelve (12) significantly yet differentially abundant metabolites associated with viral infection and health complications, in COVID-19 obese patients. Two of the detected metabolites, n6-acetyl-l-lysine and p-cresol, are detected only among the COVID-19 cohort, exhibiting significantly higher levels in COVID-19 obese patients when compared to COVID-19 lean patients. These metabolites have important roles in viral entry and could explain the increased susceptibility of obese patients. On the same note, a set of six metabolites associated with antiviral and anti-inflammatory functions displayed significantly lower abundance in COVID-19 obese patients. In conclusion, this report highlights the plasma metabolome of COVID-19 obese patients as a metabolic feature and signature to help improve clinical outcomes. We propose n6-acetyl-l-lysine and p-cresol as potential metabolic markers which warrant further investigations to better understand their involvement in different metabolic pathways in COVID-19.


Subject(s)
COVID-19 , Cresols , Humans , Lysine , Metabolomics/methods , Obesity/complications , SARS-CoV-2
16.
Front Immunol ; 13: 919477, 2022.
Article in English | MEDLINE | ID: covidwho-1938621

ABSTRACT

The interferon-induced transmembrane protein 3 (IFITM3), a small molecule transmembrane protein induced by interferon, is generally conserved in vertebrates, which can inhibit infection by a diverse range of pathogenic viruses such as influenza virus. However, the precise antiviral mechanisms of IFITM3 remain unclear. At least four post-translational modifications (PTMs) were found to modulate the antiviral effect of IFITM3. These include positive regulation provided by S-palmitoylation of cysteine and negative regulation provided by lysine ubiquitination, lysine methylation, and tyrosine phosphorylation. IFITM3 S-palmitoylation is an enzymatic addition of a 16-carbon fatty acid on the three cysteine residues within or adjacent to its two hydrophobic domains at positions 71, 72, and 105, that is essential for its proper targeting, stability, and function. As S-palmitoylation is the only PTM known to enhance the antiviral activity of IFITM3, enzymes that add this modification may play important roles in IFN-induced immune responses. This study mainly reviews the research progresses on the antiviral mechanism of IFITM3, the regulation mechanism of S-palmitoylation modification on its subcellular localization, stability, and function, and the enzymes that mediate the S-palmitoylation modification of IFITM3, which may help elucidate the mechanism by which this IFN effector restrict virus replication and thus aid in the design of therapeutics targeted at pathogenic viruses.


Subject(s)
Antiviral Agents , Lipoylation , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cysteine , Interferons/metabolism , Lysine/metabolism , RNA-Binding Proteins/metabolism
17.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: covidwho-1875639

ABSTRACT

Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow cellular uptake and mRNA release. Random poly(lysine-co-isoleucine) polypeptides were synthesized and investigated as possible carriers for mRNA delivery. The polypeptides obtained under lysine:isoleucine monomer ratio equal to 80/20 were shown to give polyplexes with smaller size, positive ζ-potential and more than 90% encapsulation efficacy. The phase inversion method was proposed as best way for encapsulation of mRNA into polyplexes, which are based on obtained amphiphilic copolymers. These copolymers showed efficacy in protection of bound mRNA towards ribonuclease and lower toxicity as compared to lysine homopolymer. The poly(lysine-co-isoleucine) polypeptides showed greater than poly(ethyleneimine) efficacy as vectors for transfection of cells with green fluorescent protein and firefly luciferase encoding mRNAs. This allows us to consider obtained copolymers as promising candidates for mRNA delivery applications.


Subject(s)
Isoleucine , Lysine , Isoleucine/genetics , Lysine/genetics , Poly A , Polymers , RNA, Messenger/genetics , Transfection
18.
Chembiochem ; 23(13): e202200158, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1866514

ABSTRACT

The article published by Nie et al. addressed one of the two key questions regarding the Omicron variant of SARS-CoV-2, while the underpinning for the less deadly nature of the variant remains unexplained. The proteins of the Omicron variant have numerous mutations, notably several substitutions of other amino acids by lysine residues. Glycine and valine attract calcium and enhance the formation of stressful, insoluble, and stiff calcium oxalate. Lysine residues in proteins build up chloride via ionic bonds which solubilizes insoluble and rigid divalent salts. The aforementioned mutations have weakened the lethalness of the Omicron variant perhaps via a biochemical mechanism. Despite net gain in favorable mutations versus deleterious mutations, the overall valine plus glycine content is still high in the proteins of Omicron variant of SARS-CoV-2, which remains a public health concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycine , Humans , Lysine , SARS-CoV-2/genetics , Valine
19.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: covidwho-1860818

ABSTRACT

Many statistical methods for pathway analysis have been used to identify pathways associated with the disease along with biological factors such as genes and proteins. However, most pathway analysis methods neglect the complex nonlinear relationship between biological factors and pathways. In this study, we propose a Deep-learning pathway analysis using Hierarchical structured CoMponent models (DeepHisCoM) that utilize deep learning to consider a nonlinear complex contribution of biological factors to pathways by constructing a multilayered model which accounts for hierarchical biological structure. Through simulation studies, DeepHisCoM was shown to have a higher power in the nonlinear pathway effect and comparable power for the linear pathway effect when compared to the conventional pathway methods. Application to hepatocellular carcinoma (HCC) omics datasets, including metabolomic, transcriptomic and metagenomic datasets, demonstrated that DeepHisCoM successfully identified three well-known pathways that are highly associated with HCC, such as lysine degradation, valine, leucine and isoleucine biosynthesis and phenylalanine, tyrosine and tryptophan. Application to the coronavirus disease-2019 (COVID-19) single-nucleotide polymorphism (SNP) dataset also showed that DeepHisCoM identified four pathways that are highly associated with the severity of COVID-19, such as mitogen-activated protein kinase (MAPK) signaling pathway, gonadotropin-releasing hormone (GnRH) signaling pathway, hypertrophic cardiomyopathy and dilated cardiomyopathy. Codes are available at https://github.com/chanwoo-park-official/DeepHisCoM.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Humans , Biological Factors , Carcinoma, Hepatocellular/genetics , Gonadotropin-Releasing Hormone , Isoleucine , Leucine , Lysine , Mitogen-Activated Protein Kinases , Phenylalanine , Tryptophan , Tyrosine , Valine
20.
Trends Biochem Sci ; 47(5): 372-374, 2022 05.
Article in English | MEDLINE | ID: covidwho-1821500

ABSTRACT

Modifications of cysteine residues in redox-sensitive proteins are key to redox signaling and stress response in all organisms. A novel type of redox switch was recently discovered that comprises lysine and cysteine residues covalently linked by an nitrogen-oxygen-sulfur (NOS) bridge. Here, we discuss chemical and biological implications of this discovery.


Subject(s)
Cysteine , Lysine , Cysteine/chemistry , Lysine/metabolism , Oxidation-Reduction , Oxidative Stress , Protein Processing, Post-Translational , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL